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/. TWO VARIABLE MODELLING OF EQUATORWARD
BOUNDARY OF AURORAL PRECIPITATION

N

1. Introduction

The SSJ/3 detector consists of a set of two curved plate electro-

static snalyzers designed to measure the flux of precipitating electrons
. in the energy range from 50 eV to 20 KeV. The detectors are flown routinely

on the satellites of the Defense Meteorlogical Satellite Program (DMSP).
The data returned from the detectors have been used to conduct an extensive
study of the systematics of the shape and motion of the equatorward
boundairy of auroral precipitation. The equatorward extent of auroral pre-
cipitation 1s a key boundary condition on the state of the earth's magneto-

sphere.

Each pass of the satellite over the auroral oval provides two
boundary determinations. Omne technique for studying the boundary is to tag
each pair of boundary determination with the magnetic local times in which
they occur and to consider each pair of two crossings to have been made
simultaneously. These pairs of points can then be separated into clasces
according to the magnetic local time zones associated with each boundary
location. Since the orbit of the satellite is nearly sun synchronous the

' same pairs of magnetic local time zones are passed through each day such that

the number of local time zone classes is limited. Q?z e e e

The boundary of electron precipitation moves equatorward and poleward
in response to variations in geomagnetic activity, changes in the Inter- L
planetary Magnetic Field and many other variables. The functional form of the
relationship is at best poorly known. It is of value therefore to see if the

boundary locations in pairs of magnetic local times vary together in any con-

sistent manner. One wishes to know how the geometry and size of the oval

3 behave. By plotting the pairs of boundaries for a pair of magnetic local times
» and analyzing for a trend in the data this question can be addressed.
..
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Since the boundaries should not be functionally dependent one on the
other but are both rather functions of unmeasured quantities the normal
linear regression techniques that assume one quantity to be dependent and
one quantity to be independent are not appropriate. Also, since we are at-
tempting to define the geometry and its variation we wish to deal with a
single functional relationship in each pair of magnetic local times. For
these reasons one requires a technique that simultaneously minimizes the error

in both x and y quantities.

2. Mathematical Approach

Given a set of data points (xi, yi), i = 1, ... n, a least squares linear
interpolation with respect to two independent variables, x and y, is desired.
This is mathematically equivalent to saying the summations of the distance

squared between each data coordinate and the generated fit will be minimal.

The distance between a point and a line is defined by eq. 2.1,

2.1 |Ax + Bx_+c;

&=
Vv A2 + B2
where the line is AX + BY + C = 0 and the point is (x,y)

We can now define the distance between each data point and the desired

fit by eg. 2.2. Note Figure 2.1,

2.2 JAxi + Byi + C] ,1i=1, ..., n.
€i=
A2 + B2

The fit to be determined will be in the conventional linear equation
Y = AX+C. If the solution is going to be in this form, then "B" in eq. 2.2

takes on the value ~1. This yields eq. 2.3.
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A x1 - yi + ¢k ,1i=1, ..., n.

v A2 +1

2.3 el
It should be noted that we can solve for the equation X =B Y + C,
yielding the distance equation

2.3b J-xi + B yi + c]

Either method yields the same linear fit, therefore convention shall

» 1=1 ..., n,

be the rule.

Applying the "standard lease squares method” we shall minimize the
squared distance between the fit and data. Thus we want to minimize eq. 2.4.

n n 2
A 2 - +
2 r e1? = T Ux-y+0 A F (A,0).
1=1 1=1 A2 +1 =
\ To calculate A and C in @q. 2.4, which determines the fit, the partial

derivative of F(A,C) with respect to A and then C is set to 0. This will yield
' 2 equations of 2 unknowns, A and C. If the determinant of the resulting matrix

does not vanish (i.e. two different equations are produced) we can solve for A

and C to get the optimal fit. It can be easily shown, and will be, that the

determinant never vanishes.

* 3. Formulation Of The Fit Coefficients
;;‘; The calculation of the partial derivative of F(A,C), eq. 2.4, with re- .
¥ . spect to A and C will be shown now
b, 2 .
: n (Axy4 - +C by
& 3.1 51’52 © . sf =& LR =2 T (Ax;-y#C) = 0
' i=1 2 A%+l i=]1

A"+ 1
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( D (Ax, -y, + c)? )
I 3
3.2 6 F(A,C) - i=1 A" +1
: 6A GA
2 2
n 2(Axi-y +C) x, (A+1) - (Ax, -y, +C)“ 24
- 3 i 1 - 1 =Yy
1=1 a2+ 1)
2 iy 2 2 -1
= = T (Axi—yi+C)xi-(Axi-yi+C)A(A + 1) =0
A" +1 i=1
Since the partial derivatives are set to 0 the temrm 2—2— can be
A" +1
cancelled out of both equations. Rewriting 3.1
5 F(A,C iy a
3.1a SFRA,0 . A I x, - z Y4 + nC = 0; where
6¢C i-1 i=1

n is the number of data points. Similarly for eq. 3.2 and also multiplying
(Az + 1) we get

n
3.2b SF(A0) . 3 |(ax.?-y.x, +Cx,) (A2 + 1) - (Ax,~y,+C)2 A
1 i*4 1 1774
S5A i=1
n 2 2 2, .2 2
= 121 Axi -yixi+Cx1--Ay1 - AC” + A x1y1+2ACy1-ACxi]-0

This can be written into a form similar to eq. 3.la.

n n n n
3.2b OF(AC) ., 3 xiz-A T yiz+A2 T oxy tUC Iy,
5A 1=1 =1 =1 1=l
2 n 2 n n
- A" C z x, - ACn + C z X, - T -
=1 1 =1 1 g=1 XYy =0
9
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Notation can be introduced to reduce some bulk of the equations..

Let
n n . n 2 _
z xi__e_ X, I vy AY, z Xy éx s
i=1 i-1 i=1
n 9  — n — '
I vy AY, and I x,¥, A XY .
1-1 - 1-1 -

Since all five notations above are summations on the given data they

can be considered constants in the equations. The P.D.'s can now be

displayed as

3.3 _QM——:AX-Y +nC =20

& A
3.4 -BFMA0 . 4 (T-T+ATXD +AC (21 - AX - Cn)
&A .

+ CX-XY =0

From 3.3 we can define C as
3.5 C = Y- AX ,
n

and inserting this into 3.4 and expanding

_ ‘) y
BFMAC)  _ . s+ alime A _ AX
3.6 B AX - AY + A° XY + = — .
B AR
+ = - - X¥=0 ]!
n n
10
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Combining into like terms w/r to A, a quadratic is formed.

: [N ) _ - 12 02 LI —
3.6a S E(a,cC -Az[xy-ﬂ—] +A[X—Y+Y-x]4[Yx -E]-o
A n n n

The quadratic formula can be employed to solve for A. This will yield
a minimum and a maximum value for A. A double root is impossible to be
derived. This can be concluded because the square term is the negative of

the constant in eg. 3.6a and because of the nature of the quadratic equation.

Placing the two unique values for A in eq. 3.5, two unique values for
C are obtained. The two resulting equations are linearly independent because
of unique A values and the nature of eq. 3.5. Thus, the determinant of the

generated 2x2 matrix is non-zero and we can solve for an optimal fit.

Taking the second P.D. with respect to A, we derive the test for the

value which minimizes the error.

2 . . ‘9 *9
R =2A[XY ——;‘Y—] +[x-y+—Y——°—’5-]
SA
2
3.8 2 FAO gy
6¢C
By taking the minimum produced by eq. 3.7 and placing it in equation 3.5,
we obtain C, knowing C will be a minimum by eq. 3.8. The fit coefficients are

derived and are of the form

! 3.9 Y= Ax + C.




4. Applied Linear Fits

In Figure 4.1, data is plotted with the morning boundary as the
abscissa and the evening boundary as the ordinate. Figure 4.2 is the
same data only reversed coordinate system. The straight line is the
normal least squares fit with x the independent variable. The line is
determined by the "z's" is x and y independent and the line of "x's"
is y independent. In each plot the line determined by x and y being
independent falls between the other two lines as should be expected.

Figures 4.3 and 4.4 show similar results except for different

magnetic local times and hemisphere.
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